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Abstract:  An eigenvector analysis based algorithm is presented for 
estimating refractive index changes from 2-D reflectance/dispersion images 
obtained with spectro-angular surface plasmon resonance systems. High 
resolution over a large dynamic range can be achieved simultaneously.  The 
method performs well in simulations with noisy data maintaining an error of 
less than 10-8 refractive index units with up to six bits of noise on 16bit 
quantized image data. Experimental measurements show that the method 
results in a much higher signal to noise ratio than the standard 1-D weighted 
centroid dip finding algorithm. 
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1. Introduction  

Surface plasmon resonance (SPR) has many applications in biosensing, drug development, 
food, safety, environmental monitoring and medical diagnostics [1].  In these applications, 
SPR is used to measure quantities such as analyte concentration, affinity, kinetics and 
specificity, with a constant push towards increasingly accurate measurements [2,3].  Indeed, 
though SPR has the advantage that it does not require labeling of analytes, current SPR 
systems are not as sensitive as fluorescence-based systems in the case of small molecules 
[4,5]. 

A surface plasmon is an electron density wave that travels at a metal-dielectric interface 
such that the oscillating electrons in the metal have an associated electromagnetic field that is 
confined to the interface [6].  By tracking changes in the resonance conditions that excite 
surface plasmons (i.e. momentum and energy matching), changes in the refractive index of the 
dielectric sensing medium can be detected. Most existing SPR sensing systems are based on 
varying the angle of incidence (momentum) at a fixed excitation wavelength (energy) in order 
to track changes in the reflectance curve. Various algorithms have been published for 
identifying the minimum in the reflectance curve corresponding to the angle of resonance [7]. 

Currently, the highest accuracy SPR systems track optical phase changes at resonance 
(rather than reflectance): by combining SPR with interferometry, a resolution in index of 
refraction change of 4x10-8RIU (refractive index units) has been demonstrated [8]. Phase-
based methods, however, suffer from very limited dynamic range since the optical phase 
changes occur only in the immediate vicinity of resonance. In contrast, the more common 
reflectance-based systems typically achieve an order of magnitude less in resolution, on the 
order of 10-7 RIU, but with much greater dynamic range [3]. This work demonstrates a 
numerical technique for use with reflectance-based systems that is capable of achieving a 
measurement resolution (5x10-9 RIU) superior to phased-based systems while retaining the 
large measurement dynamic range typical of reflectance-based systems.  This is accomplished 
using linear algebra methods to analyze the 2-D reflectance/dispersion images of the surface 
plasmon resonance response, as outlined in Section 2. 

The numerical analysis method described here was designed for use with spectro-angular 
SPR systems, where both angle and wavelength reflectance information are acquired 
simultaneously.  The output of such a system is a 2-D image of the surface plasmon dip as 
opposed to the familiar 1-D curve containing the resonance dip (See Fig. 1).  This multi-
modal approach in SPR techniques, where multiple types of information are gathered 
simultaneously, is becoming more prominent in the literature [9,10].  Spectro-angular SPR 
configurations have been used to image the surface plasmon dispersion curve [11-13], 
indirectly in a biosensing application [14], and proposed for biosensing [15].  Though a 
number of papers in the literature have proposed methods for analyzing 1D SPR curves [16], 
to our knowledge, little work has been devoted to the analysis of multi-modal SPR results, 
such as that obtained with spectro-angular systems. The work presented here seeks to address 
this need. 

(C) 2008 OSA 24 November 2008 / Vol. 16,  No. 24 / OPTICS EXPRESS  19494
#101454 - $15.00 USD Received 11 Sep 2008; revised 2 Nov 2008; accepted 5 Nov 2008; published 10 Nov 2008



 

 
θ or λ 

Fig. 1. A 2-D SPR reflectance/dispersion image (a), and a 1-D SPR dip (b).  The 1-D curve 
represents a slice from the 2-D image taken at either a fixed angle or wavelength. 

 
The layout of a Kretschmann configuration spectro-angular SPR system is shown in Fig. 

2. A flat linearly polarized broadband beam is focused on to the sample using cylindrical lens 
CL1; this provides the simultaneous angular and wavelength spread needed.  The reflected 
light is re-collimated on the same axis by a second cylindrical lens (CL2) and is then incident 
on a diffraction grating positioned so that diffractive wavelength dispersion takes place in the 
orthogonal axis to the focusing axis of the cylindrical lenses.  The light is then focused with a 
final cylindrical lens (CL3) (on the wavelength axis) onto a CCD camera.  The resulting 
image on the camera shows a 2-D map of reflectance values having wavelength along one 
axis and angle along the other (a reflectance/dispersion image).  

 
Fig. 2. Spectro-angular SPR configuration. (Pol = polarizer, CL= cylindrical lens). 

 
The recent advent of surface plasmon photonic bandgap (SP-PBG) systems [17] provides 

interesting possibilities for new developments in SPR sensing, and for spectro-angular SPR 
systems in particular. A SP-PBG system is one where a surface grating is used to perturb the 
SP such that it cannot propagate on the interface due to destructive interference.  A 1-D 
bandgap, for which SP propagation is forbidden in one direction, is considered here.  It is 
generated using a 1-D grating since SP propagation is forbidden only along the grating vector.  
To generate a bandgap in the reflectivity image, the metal film on the sensing surface is 
patterned with periodic features having dimensions less than the wavelength of the incident 
light [18] (see “Grating” on the gold sensing surface in Fig. 2). In the case of small amplitude 
periodic corrugations, the Bragg period (ΛB) is related to the surface plasmon wavelength (λsp) 
and free-space wavelength (λo) as follows: 
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where εD is the dielectric constant of the dielectric and εmr is the real part of the dielectric 
constant of the metal.  The bandgap resulting from such a corrugated metal surface can be 
seen in Fig. 3, which compares 2-D reflectance/dispersion images for both smooth and 
patterned metal (bandgap) surfaces, generated with rigorous coupled wave analysis (RCWA).   

SP-PBG systems generate 2-D reflectance/dispersion images with increased information 
density and “image texture” that we hypothesize can be used to improve measurement 
accuracy given the 2-D analysis that is presented here. In addition, recent work on SP-PBG 
systems based on corrugated metal surfaces suggests that such systems increase SPR 
sensitivity in the neighborhood of the bandgap; a phenomenon that may also benefit the 2-D 
analysis [19,20].         

       
Fig. 3. RCWA simulated 2-D reflectance/dispersion image from a spectro-angular SPR system 
having either a smooth 50nm thick gold surface (a) or a corrugated (period 300nm) gold 
surface (b).  The structure for (b) is shown in (c). 

 
2. Method for refractive index estimation 

The goal of this work was to develop a numerical method to estimate refractive index changes 
with spectro-angular SPR systems.  Its basic principle is the creation of a set of orthogonal 
basis vectors, bj, from a set of reflectance/dispersion images which span the refractive index 
range of interest. This basis, the ensemble of orthogonal vectors bj, is thus used to model the 
reflectance/dispersion image data over the refractive index domain of interest. In order to 
estimate the effective index of refraction corresponding to a particular reflectance/dispersion 
image, the “inverse problem” is solved by projecting the image data against the basis using 
standard linear algebra techniques, as explained below. 

The basis set, bj, is calculated by performing an eigenvector analysis on a training set of 
reflectance/dispersion images corresponding to known refractive indices, ni (i = 1..N), 
spanning the range of refractive indices of interest, nmin < ni < nmax. We chose to use singular 
value decomposition (SVD) for the eigenvector analysis [21]. As there is no numerical 
advantage to processing the image data in 2D, the linear algebra operations outlined below are 
performed in 1D. Therefore, the eigenvector analysis is performed on the set of normalized 
1D vectors, ai (i = 1..N), formed by converting the training set of reflectance/dispersion 
images to vector form by concatenating the images row by row, yielding the basis vectors, bj. 
Normalization of the input vectors (ai/||ai||) ensures that the method is insensitive to overall 
intensity fluctuations in the data. 

Since the basis vectors are orthogonal, the following applies: 

bi · bj     = 0, if i ≠ j          (2) 

             ≠ 0, if i = j 

Once the basis vectors, bj, are obtained, the training set vectors, ai, are projected against 
the basis to form the matrix of weights, A, using the inner product operator: 

a b c 
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ij i jA = •a b          (3) 

Accordingly, the original reflectance/dispersion training set vectors, ai, can be 
reconstructed from linear combinations of the basis vectors, bj, according to the weights, Aij: 

i ij j
N

A=∑a b   (i,j=1..N)      (4) 

The “inverse problem”, by which the refractive index of a candidate 
reflectance/dispersion image, nx, is calculated, proceeds in two steps. First, the candidate 
reflectance/dispersion image is converted to vector form, v, by row concatenation and then 
projected against the basis to form the weight vector, w: 

j jw = •v b          (5) 

Note that the weight vector, w, is similar to a row of the weight matrix A except that it 
corresponds to an unknown candidate image, rather than to one of the training set images. 
Secondly, the weight vector, w, is projected against each row of the weight matrix A to obtain 
the solution vector s: 

ws A=                       (6) 

whose elements are the result of the inner product between the candidate 
reflectance/dispersion weight vector, w, and each of the weight vectors corresponding to the 
reflectance/dispersion images in the training set. The elements of s thus correspond to the 
relative degree of similarity between the candidate reflectance/dispersion image and each of 
the images in the original training set. Furthermore, the elements of s can be considered as 
sampled values of a continuous objective function to be maximized over the domain 
[nmin,nmax]. The abscissa of the interpolated maxima will thus correspond to the desired 
unknown index of refraction, nx. 

 
Fig. 4.  Summary of refractive index estimation method. 

 
The more experimentally relevant difference of refractive indices corresponding to a 

change of state in the dielectric sensing medium is obtained by subtracting refractive index 
estimates calculated from successive candidate reflectance/dispersion images. If desired, the 
dimensionality of the problem can be reduced by retaining only a subset of most significant 
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vectors in the basis, bk (k < N), as in the method of principal component analysis (PCA). A 
summary of the process is shown in Fig. 4. 

3. Results 

In order to first validate the method using numerical simulations, a basis was constructed from 
a training set of reflectance/dispersion images at equi-spaced refractive indices over the range 
nmin=1.3 to nmax=1.38 generated using RCWA. A set of candidate test reflectance/dispersion 
images, at index values between that of the training set images, were also generated using 
RCWA. The algorithm outlined above was then used to calculate the refractive index 
differences between successive test candidate reflectance/dispersion images.  The test 
candidate images were treated as unknowns when input to the algorithm and the error between 
the estimated refractive index differences and the known values constitutes the estimation 
error.  

Figure 5 shows estimation error results, εrms, for a known index difference of 1x10-6 RIU 
across bases of varying sizes, N, corresponding to training sets of varying index of refraction 
intervals, ΔnB. A range of training set interval lengths was explored to determine the optimal 
value for accuracy and efficiency of computation. The interval of ΔnB  = 0.002 RIU (N = 40) 
was found to be optimal: a smaller interval did not improve performance and only served to 
increase computation time.  As seen in Fig. 5, for a basis set built from 40 images (ΔnB  = 
0.002), the rms error in the refractive index difference estimation is 5x10-9RIU (calculated 
over the range from n=1.305 to 1.375). 

 
Fig. 5. Comparison of estimation errors, εrms , for a test set of reflectance/dispersion images 
w.r.t. bases of various sizes (N=80,40,20,10) and corresponding index of refraction intervals 
(ΔnB = 0.001, 0.002, 0.004, 0.008 RIU). The εrms values are calculated between n=1.305 and 
1.375 in order to ignore edge effects. 

 
The wide dynamic range achievable using the proposed method can be easily seen from 

Fig. 5. There is a slight edge effect since performance degrades for n<1.305 and n>1.375, 
though it is not of great significance since the training set can be extended to cover a slightly 
larger index range if required.  In cases of narrower refractive index ranges (i.e. a smaller 
dynamic range), the same accuracy can be achieved with a smaller basis set while maintaining 
the same index increment in the training set (see Fig. 6). 

The robustness of the method to variations in experimental parameters was numerically 
evaluated with respect to random intensity additive noise, CCD camera spatial resolution and 
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intensity level resolution (A/D quantization noise). Gaussian noise was added to the simulated 
images in such a way that the standard deviation of the pixel noise, σNb, was equivalent to a 
given number of bits, Nb=1,2,…n, where n is the number of bits in the CCD camera A/D:  

12
12Nb −

−= n
Nbσ        (7)  

The rms error in the refractive index difference estimation was then determined as a 
function of this bit noise.  The noise injection process was repeated for all training images 
used to form the basis set, as well as for the set of candidate test images. The resulting rms 
error in the refractive index difference estimation for each additive noise level is shown in 
Fig. 7, demonstrating that the method yields an error of less than 1x10-8 RIU for up to four 
bits of noise.  It should be noted that this result was obtained without applying any of the 
standard noise filtering techniques that are typically used in SPR measurements (such as 
smoothing the curve).  

 
Fig. 6. Estimation errors for basis sets of various sizes (N=80,60,40, and 20 
from largest to smallest). All use ΔnB=0.001 RIU in the training set. 

 
Figure 7 shows results with respect to both the CCD spatial resolution and intensity level 

quantization.  The upper set of curves is for an 8-bit CCD while the lower set is for a 16-bit 
CCD.  Each set consists of three separate curves for pixel resolutions of 256x256, 512x512 
and 1024x1024.  While it is clear that high resolution CCDs outperform low resolution 
CCD’s, the gain in performance is modest.  A more significant difference is the A/D 
quantization, where 16bit CCDs outperform 8bit devices by more than an order of magnitude.  
An 8bit CCD would only be capable of resolving an index difference of Δn=10-6 RIU if the 
image noise was low (Nb<2) and the spatial resolution was high (1024 x 1024).  
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Fig. 7. Performance of the algorithm as a function of the number of bits, Nb, of additive 
Gaussian noise (Eq. 7) in the reflectance/dispersion images, calculated for a series of candidate 
test images over index values ranging from 1.305 to 1.375 and using ΔnB=0.002 RIU to build 
the basis (N = 40). Results are shown for both 8-bit and 16-bit cameras, at three different 
resolutions (256x256, 512x512, and 1024x1024). Note the graph labeled “Sum of squared 
diffs” which indicates the best-case performance (1024x1024 16-bit camera) of a variation of 
the algorithm that uses a simple sum of squared differences as the error measure between 
training set and candidate test images for building the solution vector s, rather than the full 
method involving the projection against the basis.  

 
Finally, the graph labeled “Sum of squared diffs” indicates the best-case performance 

(1024x1024 16-bit camera) of a variation of the algorithm that uses a simple sum of squared 
differences as the error measure between training set and candidate test images for building 
the solution vector s, rather than the full method involving projections against the basis. The 
use of a less robust error measure such as the ubiquitous sum of squared differences thus 
downgrades the performance of a 16-bit camera to that of an 8-bit equivalent device. The 
comparative robustness of the basis projection method of building the solution vector, s, is 
expected to be even more pronounced for experimental data (compared to simulations) which 
will contain additional noise and image distortion. 

A fundamental question impacting the performance of the proposed method involves the 
source of reflectance/dispersion training images used to create the basis. The natural 
inclination would be to use an actual spectro-angular SPR system with calibrated refractive 
index solutions to step through a range of refractive indices and capture the corresponding 
reflectance/dispersion images. This hypothesis was tested using numerical simulations by 
adding noise and random index errors (Δni) to a set of training images generated with RCWA, 

where the resulting indices, (ni±Δni), have an average uncertainty, inΔ , similar to that of 
actual calibrated solutions due to solution purity limitations and temperature variations. Our 
results (not shown) clearly indicate that this random error would propagate through the 
calculations and limit the accuracy of the method to the same order of magnitude as the 
average refractive index uncertainty of the training set.  Furthermore, the number of calibrated 
solution samples needed would depend on the desired dynamic range and could rapidly 
become unmanageable.   

Perhaps surprisingly, a more accurate and practical choice for the training set image data 
is simulated data calculated by modeling the structure of the interface as closely as possible 
(this method is used throughout this paper).  The advantage of this method lies in the fact that, 
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although the simulated reflectance/dispersion images will not exactly match that obtained 
from the actual system (due to the difficulty to perfectly model the experimental setup), the 
errors incurred due to this mismatch are systematic and are largely eliminated when taking 
differential measurements such as changes in refractive index.  

A further advantage of this method is that the dynamic range can be arbitrarily extended 
simply by generating new simulations a posteriori (as opposed to measuring new training 
index samples under the exact same operational conditions).  The resulting experimental error 
on index of refraction difference estimations using this method (simulated training images to 
form a basis), however, will depend on the cumulative effect of the differences between actual 
and modeled parameters (metal/dielectric interface, optics, etc.) and can only be truly assessed 
experimentally.   

3. Bandgap images 

In light of our experience with photonic bandgap structures [14], we hypothesized that adding 
additional “information density” to the reflectance/dispersion images would further improve 
the discrimination of candidate test images using our proposed method. For this purpose, 
gratings with a 10nm height and 300nm period on the sensing gold surfaces were simulated to 
create a bandgap in the reflectance/dispersion images, as shown in Fig. 3. 

Surprisingly, however, our results (not shown) indicate that, for small index changes 
(Δn<1x10-6), the bandgap images conveyed no special advantage in terms of performance.  
There was a slight advantage when measuring a much larger index difference of 1x10-3RIU; 
however, the improvement was small, and more importantly, large index changes are not 
interesting since they are not difficult to measure with other, simpler, methods. 

4. Experimental results 

To validate the method, an experimental spectro-angular SPR system was built to monitor 
index changes in a liquid dielectric medium using a basis set formed from simulated training 
set images, as explained above.  The setup monitored water and three salt solutions of 
different molarities (0.2M, 0.6M and 1M) in contact with a flat gold surface.  The salt 
solutions were injected into a chamber (1.2cm3 volume) abutting the gold surface and images 
were taken every 60 seconds for 60 minutes.  Each of the captured images was calculated 
from an average of ten frames taken with the CCD camera (480x640 pixels, 8bits/pixel).  The 
background light was eliminated by subtracting a dark image taken without the source.  The 
light source for this experiment was a 2mW super luminescent diode with a 42.5nm 
bandwidth centered at 850nm.  The focal lengths of the cylindrical lenses were 19mm. An 
example of simulated and experimental candidate test images is shown in Fig. 8.  The 
widening of the dip at the top and bottom of the image in Fig. 8(b) is due to the lack of source 
power at those wavelengths.  The tilt of the dip is due to a slight rotational misalignment of 
optical components in the light path. 

Normally, all reflectance/dispersion images would be normalized using the orthogonal 
polarization, as in standard SPR. With this particular experimental setup, however, fringes in 
the images (Fig. 8(b)) caused by aberrations in the large numerical aperture cylindrical singlet 
lenses (CL1 and CL2 in Fig. 2) forced us to use an alternative. Indeed the fringes in the 
orthogonal polarization images where out of phase by λ/2 and thus amplified the oscillations 
when used for normalization. Instead, we used the same polarization image acquired with air 
in the chamber, whose fringes were not shifted but of different magnitude, for normalization. 
In future experimental setups, using higher quality lenses, normalization will proceed in the 
usual way by using the orthogonal polarization reflectance/dispersion images. 

The index change tracking in the experimental images was estimated using both the 
proposed 2-D method and a standard 1-D weighted-centroid dip finding algorithm performed 
on horizontal slices of the same data [22].  The results in Fig. 9 show the index change steps 
brought about by the salt solutions (starting with water) for both the proposed method (Fig. 
9(a)) and the dip finding algorithm (Fig. 9(b)).  Each solution was left in the chamber for 
approximately 15 minutes before a new solution was added.   
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Fig. 8. Comparison of (a) simulated reflectance/dispersion image and (b) experimentally 
captured image.  

 
To compare the performance of each method, signal to noise ratios (SNR) were 

calculated at each step in refractive index. Note that in the case of the 1-D weighted-centroid 
dip finding algorithm, the SNR for a particular index step was averaged over three slices 
obtained from the corresponding dispersion/dispersion image. The following expression was 
used to calculate a step-specific SNR using the mean index value of each step ( x ) as the 
signal and the standard deviation of the values within each step (σ ) as a measure of the noise: 

( )σ
xSNR log10=        (8) 

Figure 9 clearly shows that the proposed method has a far superior performance: the SNR 
averaged over the four index steps is 42.4dB for our proposed method compared to 15dB for 
the standard 1-D method, an almost 3 orders of magnitude improvement. The linearity of the 
response was good for both methods: the proposed method had a linear regression fit 
(coefficient of determination) of R2=0.9942 for the response verses molarity curve while the 
1-D method had R2=0.9917. 

  

Fig. 9. Index value jumps from salt solutions on a flat gold surface over time as measured by 
(a) the proposed method and (b) the standard weighted centroid dip finding algorithm. 

 
The smallest index change measurable with this particular experimental setup can be 

estimated by assuming that a change in the order of one standard deviation of the noise can be 
determined: the average standard deviation of the noise across index change steps for the 
proposed method was 2.2x10-5RIU.  This correlates well with the limiting factor of this 
particular experimental system which used no temperature control: indeed, during the 
experiments, the temperature in the laboratory could easily change by 0.2oC over the course of 
15 minutes, resulting in a 2x10-5RIU change in water. A more advanced experimental setup is 
necessary to explore the true limits of the proposed method.  

a b 

a b 
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5. Conclusion 

A method was proposed for estimating index of refraction changes from 
dispersion/reflectance images obtained with a spectro-angular surface plasmon resonance 
system.  The method uses eigenvector analysis with simulated dispersion/reflectance images 
calculated with RCWA to determine refractive index changes from experimentally acquired 
image pairs.  Numerical simulations indicate that this method is capable of achieving a 
precision of better than 10-8 RIU across a wide dynamic range if it were to be used in 
conjunction with a low noise, high resolution 16bit CCD camera.  The method is insensitive to 
scaling of the data and is robust with respect to noise. Results obtained with a simple 
experimental system without temperature control showed the ability of the method to track 
index changes on noisy data with superior performance compared to a standard 1-D SPR data 
analysis method. 
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